

Spiration Valve System

Airway Isolation Method for the Treatment of Air Leaks

Introduction

Air Leak Isolation is a critical step to successful treatment with Spiration Valves. This brochure describes the Spiration Valve Isolation Airway Method, a systematic approach using balloon occlusion, to help physicians assess and isolate airways contributing to an air leak.

Assessing an Air Leak^{1,2}

- A chest drainage system is the best tool to monitor and assess changes in an air leak, seen by changes in the water seal monitor
- Tidal volume is another tool that can help identify airways contributing to an air leak, so talk to your anesthesiologist
- · Leaks in the chest drainage system can diminish your ability to assess leaks, promptly check connection points if you are unable to reduce a leak

Key Points in Isolation^{1,2}

- The source and number of air leaks will vary considerably between patients due to changing lung dynamics
- · It is recommended to begin isolation with balloon occlusion at the main bronchus, as this will provide two key pieces of information:
- Time it takes to evacuate air from the pleural space (Note: It may take up to 10 breaths before residual air has exited the pleural space)
- The amount of reduction expected at the end of the procedure

- Placement of a valve, in one suspect airway, may reveal additional leaks in other parts of the lung due to:
- Redirection of air to another contributing airway
- Collateral ventilation
- Bigger air leaks "masking" smaller leaks
- Once a valve has been placed, any additional leaks should be located by returning to the main bronchus to reassess, and then moving from proximal to distal airways:
- Previously tested airways that showed no evidence of an air leak before a valve was placed may now be visualized in the water seal monitor

Spiration Valve Airway Isolation Method^{1,2}

A systematic approach to locating and isolating air leaks is a critical step to successful treatment.

Treatment of an Air Leak^{1,2}

- · Treatment of an air leak may require placement of multiple valves
- · Complete cessation may not be achievable, or necessary, for successful treatment of an air leak
- · A substantial reduction in an air leak using valves may accelerate the resolution of an air leak, as the progression through the clinical stages of the air leak is improved

References

1. Mahajan AK, Doeing DC, Hogarth DK. Isolation of persistent air leaks and placement of intrabronchial valves. J Thorac Cardiovasc Surg. 2013;145:626-30. 2. Dooms CA, Declauwe H, Yserbyt J, et. al. Bronchial valve treatment for pulmonary air leak after anatomical lung resection for cancer. Eur Respir J 2014; 43: 1142-1148. isolation of tissue from ventilation

The Spiration Valve System is a minimally invasive device for the treatment of specific post-surgical air leaks.

The Spiration Valve's unique design allows it to limit distal airflow which may accelerate the resolution of an air leak.^{1,2}

CASE EXAMPLE:

52 year old male with an air leak on the left side

1. Assess	Occlusion of the MAIN bronc	
Action	Occlude the left bronchus	
Results	On inflation: 5–7 breaths to see visible reducti 10 breaths for bubbles to stop c	
	On deflation: 2 breaths for bubbles to reappo	
Conclusion	There is a leak on the left side	
2. Isolate	Occlusion of the LUL	
Action	Occlude the upper lobe on the left side	
Results	On inflation: 5–7 breaths for a visible reduction Note: no complete loss of bubbl	
Conclusion	There is a leak on the left side	
	Occlusion of the LLL	
Action	Occlude the main bronchus of the LLL	
Results	On inflation: 5–7 breaths for a visible reduct Note: no complete loss of bul	
Conclusion	There is a leak in the LLL	
Results	LB8 reduced air leak	

4. Place Valve

Action	Place valve(s) in LB8
Results	Reduction in leak
Conclusion	There are more airways contributing to leak

Reassess	Repeat as dynamics may have chang		
1. Assess	Occlusion of the MAIN bro		
Action	Occlude the left main bronchus		
Results	On inflation: 2–3 breaths for bubbles to		
Conclusion	A smaller leak remains on the left side		
2 Isolate	Occlusion of the LUI		

Action	Occlude the upper lobe on the left side
Results	On inflation: 2–3 breaths for bubbles to
Conclusion	There is a small leak in the LUL
Action	Occlude to identify the segmental or sub-s
Results	LB5 stopped air leak

4. Place Valve

Action	Place valve in LB5
Results	Air leak stops
Conclusion	There are more airways contributing to l

Lesson: The smaller leak in the left lingular segment had originally been masked by the larger leak in the lower lobe. When the air leak was stopped in the lower lobe, the LB5 was the only airway communicating with the pleural space and became visible in water seal monitor.

hus

tion in bubbles completely

Deflation

n in bubbles les

n in bubbles les

ed since valve placement

onchus stop completely stop completely LB5 segmental airway(s) contributing to the leak

Spiration Valve System

Ordering Information

Spiration Valves

Article Name	Article Number	Valve in Cartridge	9 mm	7 mm	0
IBV-V5	N3495330	5 mm		Ţ	ъ mm
IBV-V6	N3495430	6 mm	E	E ()	ε
IBV-V7	N3495530	7 mm	12 H	12 12	ш ц
IBV-V9	N5381200	9 mm	12 mm	10 mm	0.000
			12 11111	10 mm	9 1111

Airway Sizing Kit

Article Name	Article Number	Article Description	
IBV-VSK	N5534500	Kit includes 500 microliter glass syringe with a plunger, a calibration gauge, and a sizing worksheet	
B5-2C	N3530530	Balloon to be used in combination with airway sizing kit	

Deployment Catheter and Loader

Article Name	Article Number	Min. Working Channel Ø	Working Length
IBV-C26N	N3495330	2.6 mm	1020 mm
IBV-C20	N3495430	2.0 mm	1140 mm

Ancillary equipment needed for each procedure

- Flexible therapeutic bronchoscope with a working channel inner diameter of 2.6 mm or greater
- Bronchoscopy forceps appropriate for valve removal
- Standard 10 cc sterile syringe with Luer-lock
- Sterile saline (approximately 15-30 cc used per procedure)
- A balloon catheter that inflates to 13 mm or larger (for balloon occlusion only)

Note: Products are supplied sterile

5 mm

10 mm

As medical knowledge is constantly growing, technical modifications or changes of the product design, product specifications, accessories and service offerings may be required.