

PLASMA

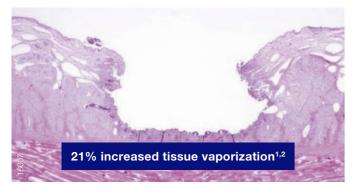
PLASMA VAPORIZATION New Plasma-OvalButton – Efficient, Versatile, and Safe

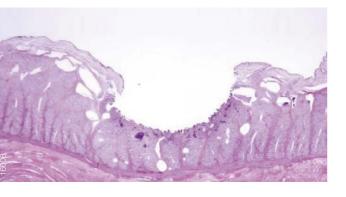
PLASMA-OVALBUTTON

Plasma Vaporization – the Next Generation

Plasma vaporization provides a safe, easy-to-use solution for TUR tissue-management procedural needs with only a fraction of the costs of laser treatments. The Olympus Plasma system provides an optimized interaction between the Plasma vaporization electrodes and the high-frequency (HF) generator so that instant plasma ignition and stable plasma vaporization are guaranteed for the smooth vaporization of prostatic tissue.

Plasma-OvalButton - the Revolution in Plasma Vaporization


With the latest Olympus innovation, the Plasma-OvalButton, the procedure of Plasma vaporization is brought to a new level in efficiency, versatility, and safety. Its oval shape, combined with an easy-to-learn vaporization technique, results in wellcoagulated, smooth tissue.


Efficiency

- Designed for enhanced TUR procedural efficiency with 25% increased width and 31% increased cross-sectional area^{1,2,13}
- · Enhanced stability with new ceramic disk13
- · 21% increased tissue vaporization^{1,2,13}

Plasma-OvalButton

PlasmaButton

Versatile Usability

Incision

Vaporization

PLASMA VAPORIZATION THERAPY

Clinical Advantages of the Plasma Vaporization Technique Safety

- · Reduced risk of TUR syndrome compared to M-TURP³
- · 64% less obturator nerve stimulation compared to M-TURB⁸
- · 27% fewer severe complications compared to TURP⁶
- 82% lower blood transfusion rate compared to M-TURP¹⁰
- · 83% fewer readmissions compared to TURP10

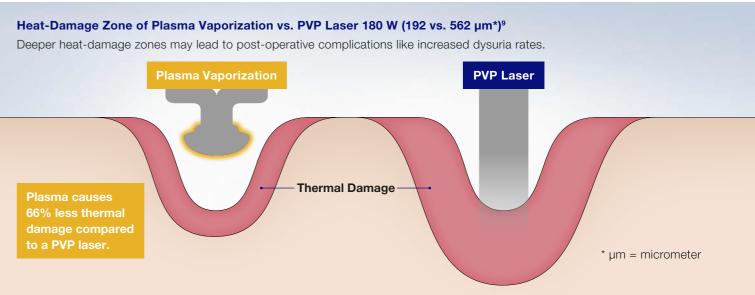
Time-Efficient

- · Significantly shorter hospital stay compared to TURP⁵
- · Shorter catheterization time compared to TURP⁶
- · Potential for day surgery due to a shorter catheterization period and hospital stay

Risk Patients

· Use has been demonstrated in patients on anticoagulants⁴

Cost-Efficient


· A fraction of the material cost of photoselective vaporization (PVP) · Costs 21% lower compared to M-TURP7,12

Easy Handling

- · Short learning curve just as simple as standard resection¹¹
- · Continuous plasma activation and instant ignition
- · Clear and unobstructed view throughout the operation as neither tissue nor laser impulses impair vision

Plasma - Controlled and Stable Energy with Minimal Thermal Damage

While most energy-based surgical products, such as lasers and monopolar electrosurgical devices, use heat-driven processes to remove or cut tissue, the Plasma vaporization technology creates a controlled, stable plasma field to remove tissue at a low relative temperature, resulting in minimal thermal damage to surrounding soft tissues and a low penetration depth of energy.

PLASMA VAPORIZATION

What Is Plasma?

Plasma is one of the four fundamental states of matter and is created by applying energy to a gas. Molecules are ionized, thus turning the gas into plasma. Due to its conductivity, the plasma allows the energy to cross at lower energy levels. This effect leads to low operating temperatures and, therefore, less thermal spread. Tissue is vaporized in a locally confined denaturation process, while surrounding tissue heating effects are minor. It appears yellow due to the sodium that is dissolved in the saline - not due to heat or burning features.

Study Abstracts of Plasma Vaporization

- ¹¹The final postoperative aspect revealed a large prostatic fossa and a particularly smooth surface and sharp margins of the vaporization area, without irregularities or obstruction.
- We determined reduced capsular perforation and intraoperative bleeding rates for this technique.
- ¹¹Plasma vaporization occurs by direct gentle contact with the tissue surface and performs concomitant hemostasis.

Ordering Information

Plasma Vaporization Electrodes

Order Nr.	Description	
WA22566S	Plasma-OvalButton	
WA22541S	Plasma-OvalButton-Long	
WA22557C	PlasmaButton	

WA22302D	PlasmaLoop, 12°, medium	
WA22306D	PlasmaLoop, 30°, medium	
WA22503D	PlasmaLoop, 12°, large	
WA22507D	PlasmaLoop, 30°, large	
WA22332D	PlasmaLoop - Angled, 12°, 30°, and 45°	
WA22351C	PlasmaRoller, 12° and 30°	
WA22355C	PlasmaNeedle - Angled, 12°, 30°, and 45°	
WA22540S	PlasmaNeedle - Right-Angled, 12° and 30° $$	
WA22558C	Plasma-TUEBLoop for transurethral enucleation	

For a detailed list of electrodes, see our Urology catalog

¹ Olympus internal lab testing; data on file

Further Plasma Electrodes

² Compared to existing Olympus vaporization electrode

Description

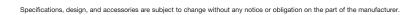
PlasmaLoop, 12°, small

PlasmaLoop, 30°, small

³ Approved by FDA

Order Nr.

WA22301D


WA22305D

⁴ Delongchamps NB, et al. Surgical management of BPH in patients on oral anticoagulation: transurethral bipolar plasma vaporization in saline versus transurethral monopolar resection of the prostate. Canadian Journal of Urology 18 (2011): 6007-6012.

Con al

- ⁵ Geavlete B, et al. Transurethral resection (TUR) in saline plasma vaporization of the prostate vs standard TUR of the prostate: "the better choice" in benign prostatic hyperplasia? BJUI 106 (2010); 1695-1699.
- ⁶ Wroclawski ML, et al. "Button type" bipolar plasma vaporisation of the prostate compared with standard transurethral resection: a systematic review and meta-analysis of short-term outcome studies BIU Int 177 (2016): 662-668
- 7 The TURis system for transurethral resection of the prostate, in: NICE medical technology guidance 23 (2015). Economic analysis done on TURis resection electrodes.
- ⁸ Geavlete B, et al. Innovative Technique in Nonmuscle Invasive Bladder Cancer Bipolar Plasma Vaporization. Urology 77 (2011): 849–854.
- ⁹ Kan CF, et al. Heat Damage Zones Created by Different Energy Sources Used in the Treatment of Benign Prostatic Hyperplasia in a Pig Liver Model. J Endourology 29 (2015) 6:714-717.
- ¹⁰ Geavlete B, et al. Bipolar plasma vaporization vs monopolar and bipolar TURP-A prospective, randomized, long-term comparison. Urology 78 (2011) 4: 930–935.
- ¹¹ Gupta NP, et al. Management of large prostatic adenoma: Lasers versus bipolar transurethral resection of prostate. Indian Journal of Urology 29 (2013) 3: 225–235.
- ¹² Treharne C, et al. Economic value of the TURis system for treatment of benign prostatic hyperplasia in England and Wales: systematic review, meta-analysis and costconsequence model. EU Focus (2016)

13 Compared to the PlasmaButton

OLYMPUS EUROPA SE & CO. KG Postbox 10 49 08, 20034 Hamburg, Germany Wendenstrasse 14–18, 20097 Hamburg, Germany Phone: +49 40 23773-0, Fax: +49 40 233765 www.olympus-europa.com

₽